How AI is being scaled across the biopharma industry

How AI is being scaled across the biopharma industry

AI in the life sciences

While AI has been around for the better part of the last decade, the last few years have marked a Rubicon moment for the technology as it reaches the point where it is finally fit for purpose and broader application across the life sciences industry. Across the sector, AI is being deployed in a number of exciting ways to drive better drug discovery and help lower the costs and risks involved in the R&D process. 

From in silico testing to identifying viable drug targets, here are some of the ways in which AI is being scaled across the biopharma industry.

More effective drug discovery processes

One of the most promising use cases for AI is its application in increasingly effective and accelerated drug discovery processes.

It’s estimated that the chemical space includes up to 1023—1060  drug-like compounds. The sheer scale of possible compounds is intractable to human beings. AI’s generative and predictive capacities mean it can be put to work identifying novel drug candidates in this vast chemical space by predicting hit and lead compounds and pharmaceutical outcomes, while also predicting the potential bioactivity, toxicity and physicochemical properties of a target compound. 

AI can also be used to screen vast molecule libraries, looking for appropriate compounds to best pair with a particular target with a known molecular structure. In 2021, Exscientia and Evotec released the first AI-detected anti-cancer drug candidate using this method, shortening the drug discovery period to 8 months from five to six years. 

DL-enabled de novo drug design uses AI to generate novel lead compound candidates using AI, allowing researchers to hone in on active agents with desirable properties faster, and at far less of a cost. A recent compound to fight fibrosis was created using this method in just 21 days, 15 times faster than traditional discovery processes.

Repurposing existing drugs

AI can also be deployed to analyze datasets to identify new indications for existing drugs, matching them with rare diseases, for example. During the COVID-19 pandemic, AI algorithms were deployed to screen for effective treatments for the virus, identifying the best candidate (a rheumatoid arthritis drug) in less than 48 hours. The drug went on to gain FDA approval for use in adults hospitalized with COVID.

Optimizing preclinical and clinical trial design

AI-enabled data management can streamline, optimize and accelerate clinical and preclinical trials by helping researchers with more effective trial design, big data analysis, and participant selection. Its potential to facilitate remote trials through the collection and analysis of data from wearable devices is particularly exciting, as it would address some key challenges, including patient attrition, the cost of administering trial sites and patient diversity. The overall result – faster, better trials, carried out at a fraction of the cost.

In silico testing

AI enables accurate molecular simulations to test candidate compounds, run on computers. In silico testing, as it’s called, eliminates the need for the physical testing of candidate compounds. This method is cheaper, faster and more accurate than traditional chemical testing. 

AI-enabled insights management solutions

AI-enabled insights management platforms allow researchers to monitor millions of emerging data points related to breaking developments in their field of research. This helps R&D teams avoid research duplication, dead-ends and patent thickets, while identifying true R&D white spaces. In a field as fast-moving and dynamic as biopharma, R&D teams spend hours manually monitoring data from clinical trials, press releases, M&A news, publications and other sources in order to make sound strategic R&D decisions. AI allows them to automate this process. 

Add the AI-enabled Similari platform to your R&D toolkit

The AI-powered Similari insights management platform is an invaluable tool for life sciences R&D teams. By constantly monitoring millions of deep data points across your chosen arena of inquiry, Similari equips you with a comprehensive, moment-by-moment snapshot of your field, as it develops day to day. With Similari, you can offload up to 90% of your manual data monitoring time while accessing insights invisible to traditional search methods.

Find out how Similari’s AI-powered platform can augment your research capabilities like never before by trying a free demo today.

Related Articles

 

Is there a magic pill? Ozempic and...

With obesity a growing concern worldwide, clinicians and health officials are scratching their heads as to what appropriate and sustainable lines of...

September 20, 2023 | 5 min read

Read More

 

Why antimicrobial resistance is an opportunity for...

Antibiotic resistance has been pegged as one of the greatest threats to global public health. In the last decades, the emergence of...

September 14, 2023 | 5 min read

Read More

 

How synthetic biology could change therapeutics

Life sciences is, frankly, an awe-inspiring space. Enter something that can sustainably and ethically engineer and redesign biological systems that don’t yet...

September 7, 2023 | 5 min read

Read More